Discovering Latent Domains for Multisource Domain Adaptation
نویسندگان
چکیده
Recent domain adaptation methods successfully learn crossdomain transforms to map points between source and target domains. Yet, these methods are either restricted to a single training domain, or assume that the separation into source domains is known a priori. However, most available training data contains multiple unknown domains. In this paper, we present both a novel domain transform mixture model which outperforms a single transform model when multiple domains are present, and a novel constrained clustering method that successfully discovers latent domains. Our discovery method is based on a novel hierarchical clustering technique that uses available object category information to constrain the set of feasible domain separations. To illustrate the effectiveness of our approach we present experiments on two commonly available image datasets with and without known domain labels: in both cases our method outperforms baseline techniques which use no domain adaptation or domain adaptation methods that presume a single underlying domain shift.
منابع مشابه
Image alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملDiscovering Domains Mediating Protein Interactions
Background: Protein-protein interactions do not provide any direct information regarding the domains within the proteins that mediate the interactions. The majority of proteins are multi domain proteins and the interaction between them is often defined by the pairs of their domains. Most of the former studies focus only on interacting domain pairs. However they do not consider the in...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملMultiple Source Domain Adaptation with Adversarial Training of Neural Networks
While domain adaptation has been actively researched in recent years, most theoretical results and algorithms focus on the single-source-single-target adaptation setting. Naive application of such algorithms on multiple source domain adaptation problem may lead to suboptimal solutions. As a step toward bridging the gap, we propose a new generalization bound for domain adaptation when there are ...
متن کاملSample-oriented Domain Adaptation for Image Classification
Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...
متن کامل